

Biodiversity Action Plan

for

SUSTAINABLE AQUACULTURE IN MANGROVE ECOSYSTEM (SAIME)

In Bangladesh By: Bangladesh Environment & Development Society

Table of Content

1.	Initial situation and objective	3
2.	Introduction to mangrove forests	1
3.	SAIME initiative: objectives, partners, and focused conservation sites	2
4.	Benefits of Sustainable Aquaculture In Mangrove Ecosystem (SAIME) in brackish ecosystem	3
F	or Consumers	3
F	or Society	3
F	or Businesses	4
F	or the Sundarbans Forest	4
5.	Strategies for sustainably restoring mangroves utilized by SAIME	5
5	.1 Approaches and measures used by BAP to protect and promote biodiversity in SAIME	1
	Table- 1: Requirements and criteria governing the incorporation of Sustainable Aquaculture in Mangrove Ecosystem (SAIME) practices into their execution	1
5 B	.2 Determination of baseline operation and when relevant, set the baseline criteria and employ the iodiversity Performance Tool (BPT)	4
	Table-2: Criteria and metrics for evaluating the farm and its effects on the surrounding environment.	5
	Table-3: Monitoring criteria for aquaculture farms and integrated mangrove aquaculture practice	6
5	.3 ESTABLISHING THE STARTING POINT (BASELINE SCENARIO)	7
	Table-4: Criteria for biodiversity documentation in current practices	7
5	.4 Establishment of Biodiversity Action Plan (BAP)	8
	Table -5: Key criteria for effective biodiversity action planning	8
5 A	.5 Promotion of native species preservation and mitigating invasive alien species (IAS) in Sustainable QUACULTURE IN MANGROVE ECOSYSTEM (SAIME)	11
	Table-6: Key criteria for fostering indigenous species and safeguarding against invasives	11
5	.6 Measures to minimize negative impacts on environment and sustainable shrimp farming practices	12
	5.6.2 Mangrove rehabilitation	12
	5.6.3 Water quality management	13
	5.6.4 Sustainable farming practices	13
	5.6.5 Waste management	14
5	.7 IMPLEMENTATION AND MONITORING OF THE BIODIVERSITY ACTION PLAN (BAP)	14
5	.8 RESPONSIBILITY OF ON-SITE AGENT	15
	Table- 7: Responsibility of on-site agent	15
5	.9 Stakeholder engagement	18
6. S	ummary	19
7. R	eferences	19

1. Initial situation and objective

Sundarbans region teems with life and biodiversity, making it a global hotspot for wildlife. It is home to a wide range of species, many of which are rare, endangered, or even endemic. The expansion of shrimp farming poses a significant threat to its environment. The Biodiversity Action Plan (BAP) seeks to mitigate this impact by harmonizing shrimp farming with mangrove conservation and biodiversity enhancement. Key elements of the plan include mangrove rehabilitation efforts, engaging the local community, protecting water quality are essential components and also focusing on previously disturbed lands for restoration. Habitat enhancement and community involvement are crucial. Regular data collection, audits, and transparent reporting ensure we can adapt our strategies effectively. Collaboration with academic institutions, NGOs, and government agencies strengthens our commitment to biodiversity conservation.

This plan represents our dedication to protecting the Sundarbans, fostering a sustainable future for both nature and communities. The objectives of this initiative are multifaceted and central to its mission. It strives to promote environmentally friendly practices within the sector. This shrimp aquaculture entails encouraging and implementing strategies that minimize the industry's environmental footprint while ensuring the sustainability of its operations. A critical goal is to conserve and rejuvenate the vulnerable mangrove ecosystem. Recognizing the ecological significance of these mangroves, the project is committed to preserving and restoring them, thus fortifying the region's natural defenses and biodiversity. Additionally, the project seeks to enhance biodiversity, not only within the aquaculture settings but also in the surrounding areas. This involves the creation of environments that support a rich tapestry of plant and animal species, fostering thriving ecosystems. Finally, there's a concerted effort to diversify habitats for the local fauna and flora. By introducing a variety of habitats within and around the shrimp farms, the project aims to accommodate the unique requirements of different species, ensuring their long-term survival and the overall health of the ecosystem. These objectives collectively form the backbone of the initiative, steering it towards a future where sustainable shrimp aquaculture and vibrant. resilient ecosystems coexist harmoniously.

2. Introduction to mangrove forests

Mangrove forests are a unique and diverse environment that support a dynamic and diversified flora and fauna that are frequently unique (Khan et al., 2020). For numerous terrestrial and aquatic creatures, they offer food, resting, and breeding habitats in addition to shelter (Mahmood et al., 2021). Food, fresh water, fuel (dung, wood, twigs, and leaves), fiber (grasses, timber, wool, and silk), biochemicals and pharmaceuticals (medicines and food additives) are some of the many benefits of the mangrove forest ecosystem. There are also genetic resources (genes and genetic information that are utilized for plant breeding and biotechnology), ornamental resources (skins, sell, and flowers), social and cultural functions (spiritual fulfillment and recreational opportunities), and biological diversity (Iqbal, 2020). Bangladesh is widely recognized for possessing the largest mangrove environment globally (Mahmood et al., 2021). One of the hotspots for biodiversity in the world, the Sundarbans mangrove forest is home to numerous unique biomes. The biome is home to more than 1186 species of known living things, including both plants and animals (Rahman and Begum, 2011). Globally, one of the industries with the quickest rates of job growth and supply of animal protein is aquaculture (FAO, 2020). According to the FRS Survey (2021), Bangladesh ranks fifth among the countries that produce shrimp. Bangladesh is a deltaic nation with large coastal and riverine areas devoted to aquaculture, making it a vital industry. Export-oriented prawn (Macrobrachium rosenbergii) and shrimp (Penaeus monodon) production dominates aquaculture in Bangladesh's coastal zones (Ahmed et al., 2023).

Shrimp farming has drawn harsh criticism despite its financial advantages due to its numerous detrimental effects on ecosystems, biodiversity, and society (Naylor et al., 2021). On the other hand, many nations have recently begun looking for strategies to stop or even reverse the loss of mangroves due to new discoveries. Fostering co-management between mangroves and shrimp can help reduce the loss of mangroves and restore portions of the mangrove ecosystem while also increasing the sustainability of shrimp aquaculture (Bosma et al., 2020; Bosma et al., 2016). In addition to being concerning from an ecological point of view, the extensive loss of mangroves is concerning for Bangladesh's economy and people's well-being because the nation is prone to flooding (World Bank, 2018). Consequently, taking into account the significance of mangrove-shrimp-pond ecosystems for biodiversity, coastal protection, nature preservation, food production, and local residents' means of subsistence (Ahammad et al., 2014), reintroducing mangroves into the current aquaculture landscape that is centered on shrimp monoculture is essential (Debrot et al., 2020).

3. SAIME initiative: objectives, partners, and focused conservation sites

The collaborative venture of the Global Nature Fund (GNF), Naturland e.V., Nature Environment and Wildlife Society (NEWS), and Bangladesh Environment and Development Society (BEDS) converge in the implementation of the project named "Multi-stakeholder partnership (MSP) to strengthen transformative processes in shrimp trade as a basis for the protection of mangrove ecosystems in South Asia" with a prime focus on "Sustainable Aquaculture in Mangrove Ecosystem (SAIME)."

The Sustainable Aquaculture in Mangrove Ecosystem (SAIME) project stands as a pivotal initiative aimed at preserving the delicate mangrove ecosystems within the Sundarban region of Bangladesh through the implementation of sustainable shrimp aquaculture practices. Bringing together a diverse coalition comprising officers from the Department of Fisheries, civil society members, local government representatives, Fisheries Research Institute, and expert trainers affiliated with Khulna University, the SAIME project prioritizes the safeguarding of mangrove ecosystems while promoting responsible shrimp farming techniques.

With a primary focus on the Sundarban areas encompassing the Dacope sub-district of Khulna district, Shyamnagar sub-district of Satkhira district, Rampal sub-district, and Mongla sub-district of Bagerhat district, the project directly engages with approximately 1,250 individuals and indirectly influences the lives of 10,000 community members. The overarching objective of SAIME revolves around the establishment of robust dialogue structures, the reinforcement of sustainable livelihoods, and the development of resilient models tailored to combat the challenges posed by climate change.

SAIME places a significant emphasis on transformative practices within aquaculture, aiming to strike a harmonious balance between human activities and the preservation of the invaluable mangrove ecosystems. Through strategic partnerships, community engagement, and the implementation of sustainable aquaculture methodologies, the project endeavors to mitigate adverse impacts on the environment while

nurturing economic growth and enhancing the resilience of the region against the perils of climate change and natural disasters.

4. Benefits of Sustainable Aquaculture In Mangrove Ecosystem (SAIME) in brackish ecosystem

For Consumers

Sustainable seafood: Consumers can enjoy seafood products (such as shrimp and fish) with confidence, knowing that they are produced using environmentally responsible practices, reducing the ecological impact and ensuring a sustainable seafood source.

Health and safety: This approach emphasize reduced chemical and antibiotic use, leading to healthier and safer seafood products for consumers. Lower use of chemicals contributes to safer water quality.

Biodiversity conservation: Consumers indirectly benefit from enhanced biodiversity conservation, as this approach protect ecosystems and species diversity, contributing to a more resilient environment.

Food security: Preservation of mangrove ecosystems supports the livelihoods of local communities and their food security, which can have a broader positive impact on the region's food supply and availability.

Quality assurance: Consumers can expect higher product quality and purity standards due to reduced pollution and water contamination in sustainable aquaculture practices.

Ethical choices: Ethically conscious consumers can support businesses that adhere to responsible and sustainable aquaculture practices, making ethical choices in their product purchases.

Transparency and traceability: This approach encourage transparent supply chains and traceability, allowing consumers to verify the origin and production methods of the seafood they purchase.

For Society

Community empowerment: SAIME involves local communities in restoration efforts, empowering them as stewards of their ecological heritage. This fosters a sense of ownership and responsibility, contributing to stronger and more resilient communities.

Climate adaptation: SAIME helps mitigate the effects of climate change by enhancing the resilience of local communities through sustainable aquaculture. The system can adapt to rising sea levels and changing environmental conditions, reducing the vulnerability of communities.

Economic opportunities: This approach create economic opportunities for communities living in the Sundarbans region. Local jobs are generated, reducing dependence on unsustainable activities, like illegal logging or overfishing, and improving the livelihoods of residents.

Ecotourism: Improved biodiversity conservation and restored mangroves can attract ecotourism, boosting the local economy, creating jobs in the tourism sector, and increasing awareness of the importance of the Sundarbans forest.

Social resilience: Sustainable practices contribute to social resilience by reducing poverty, providing food security, and supporting community well-being. This enhances the stability of local societies.

Cultural preservation: The preservation of the Sundarbans and its unique ecosystem helps safeguard the cultural heritage of the communities living in the region, as their traditions and livelihoods are closely tied to these ecosystems.

Education and capacity building: This system facilitate education and capacity building within local communities, providing knowledge and skills that empower individuals and communities to actively engage in conservation and sustainable practices.

For Businesses

Sustainable reputation: Companies adopting this method can gain a reputation for environmentally responsible and sustainable practices, attracting consumers who prefer to support eco-friendly businesses.

Access to markets: Certification through programs like organic aquaculture can provide businesses with access to international markets, expanding their customer base and increasing sales opportunities.

Long-term viability: Sustainable practices ensure the long-term viability of businesses operating in the Sundarbans region, mitigating the risks associated with environmental damage and regulatory compliance.

Innovation: The development and adoption of this tactic encourage innovation in sustainable aquaculture practices and biodiversity conservation, fostering industry leadership and research opportunities.

Risk reduction: Sustainable practices minimize risks associated with environmental damage, illegal activities, and disruptions caused by climate change, thus contributing to business continuity.

Brand loyalty: Businesses that embrace sustainability and contribute to the well-being of local communities can build strong brand loyalty and a dedicated customer base.

Investment opportunities: Adopting environmentally responsible practices opens doors to investment opportunities, including impact investments and partnerships with organizations focused on sustainability and conservation.

For the Sundarbans Forest

Ecosystem restoration: SAIME restores mangrove ecosystems, which serve as vital habitats for various species, protect against coastal erosion, and maintain water quality, thereby supporting the Sundarbans' overall ecological health.

Climate resilience: SAIME enhances the resilience of the Sundarbans forest by mitigating climate change impacts through a combination of aquaculture and mangrove restoration. This adaptation helps maintain the integrity of the forest in the face of rising sea levels and extreme weather events.

Biodiversity conservation: This approach contributes to the conservation of biodiversity within the Sundarbans. This safeguards endangered species, keystone species, and the broader ecosystem, maintaining the forest's ecological balance

Economic and social Stability: This method reduce pressures on the Sundarbans forest by offering alternative livelihoods for local communities. This, in turn, minimizes illegal logging, land conversion, and overfishing, ensuring the forest's long-term sustainability.

Carbon sequestration: Mangroves in the Sundarbans are excellent carbon sinks, capturing and storing significant amounts of carbon dioxide. The conservation and restoration of mangroves contribute to global climate change mitigation efforts.

Habitat preservation: Mangroves and their adjacent ecosystems provide essential habitats for diverse wildlife, and the protection of these habitats is vital for the long-term survival of many species.

Water quality improvement: The approach helps in maintaining healthy water quality in the Sundarbans, which benefits not only the forest but also the surrounding aquatic ecosystems, supporting various life forms.

5. Strategies for sustainably restoring mangroves utilized by SAIME

Community-Based Ecological Mangrove Restoration (CBEMR): It is an innovative approach to the restoration and conservation of mangrove ecosystems. At its core, CBEMR places local communities at the forefront of restoration efforts, actively involving them in all stages of the process. This community engagement is pivotal in ensuring that restoration plans align with the needs and priorities of the people living in and around mangrove areas. CBEMR goes beyond simply planting mangrove trees; it emphasizes the restoration of specific ecosystem traits and the emulation of natural functions. Long-term monitoring is a key feature, allowing for continuous assessment and adaptive management to address any issues that may arise. In the face of climate change and its impacts, CBEMR also plays a role in enhancing the resilience of mangrove ecosystems. Moreover, it takes into the socio-economic account dimension, supporting the sustainable livelihoods of local communities through activities like aquaculture, which coexist with restoration efforts. Overall, CBEMR is a holistic, community-driven approach that not only conserves mangroves but also empowers communities to be stewards of their natural heritage, benefiting both the environment and the well-being of local residents.

Integrated Mangrove Aquaculture (IMA): It is an approach that combines mangrove restoration with sustainable aquaculture practices, typically implemented in coastal areas where mangrove ecosystems have been degraded or destroyed. This approach establishes a symbiotic relationship between mangrove trees and aquaculture activities, creating a mutually beneficial system. IMA emphasizes sustainable aquaculture by promoting the extensive polyculture of shrimp and finfish, reducing the need for supplementary feed and minimizing the environmental impact often associated with intensive shrimp farming. Importantly, IMA contributes to mangrove protection as these ecosystems serve as a natural buffer against coastal erosion, storm surges, and other climate-related challenges. To minimize risks and overexploitation of wild stocks, IMA often involves the use of hatchery-produced shrimp seeds, such as Penaeus monodon, as candidate species for aquaculture. This approach not only provides a sustainable livelihood for local communities but also supports broader efforts to mitigate the impacts of climate change and promote environmentally responsible practices, making it a holistic and forward-thinking strategy for both community well-being and environmental conservation.

The Biodiversity Action Plan (BAP) for Sustainable Aquaculture in Mangrove Ecosystem (SAIME) employs a multifaceted approach to protect and enhance biodiversity. It encompasses site selection and assessment, responsible farming practices, mangrove conservation, rigorous monitoring and reporting, stakeholder engagement, regulatory compliance, and extensive education and outreach. These measures are designed to minimize the environmental impact of shrimp farming, conserve critical mangrove ecosystems, and promote biodiversity. BAP's collaborative and transparent efforts aim to benefit consumers, society, and businesses while safeguarding the Sundarbans Forest and its unique biodiversity

Table- 1: Requirements and criteria governing the incorporation of Sustainable Aquaculture in Mangrove Ecosystem (SAIME) practices into their execution

Criteria	Immediate	Long term	Key indicator
	Effectiveness	Effective-	
		ness	
Site selection and preparation		Yes	Ecological assessment reports for
 Choosing suitable areas for 			site selection
SAIME integration			
 Ensuring existing mangroves 			
are not disturbed			
 Selecting previously 			
disturbed areas for farming			
Mangrove rehabilitation		Yes	Number of mangrove trees planted
 Actively restoring mangrove 			annually
habitats			
 Regular maintenance of 			
mangrove health			
 Engaging the local 			
community in mangrove			
restoration			
 Establishment of mangrove 			
nursery facilities			
Water quality management		Yes	Regular water quality reports
 Implementation of efficient 			showing pollutant levels
water treatment systems			
 Monitoring and maintaining 			
proper water quality levels			
 Exploring the use of eco- 			
friendly shrimp feed			
 Optimization of feeding 			
practices to reduce			
overfeeding and waste			
 Establishment emergency 			
response protocol for crisis			
moments			

Criteria	Immediate	Long term	Key indicator
	Effectiveness	Effective-	
Sustainable farming practices	Yes	11033	Decrease in chemical and antibiotic
• Minimizing the use of			usage.
antibiotics and chemicals			
Responsible feed			
management to reduce			
waste			
 Regular monitoring and 			
management of stocking			
densities			
 Adopt energy-efficient 			
farming techniques			
Managing farm effluents			
responsibly	Nee		Adaption and offectiveness of wests
waste management	Yes		Adoption and effectiveness of waste
Development of encient waste management systems			concentration of the pesticides of
Bocycling organic wasto as			chemicals used
feed or fertilizer to reduce			Record of if the application is
waste generation			avoided on culture practice.
Conducting regular waste			
audits to improve waste			
handling practices			
 Exploring opportunities for 			
value-added products from			
waste materials			
Biodiversity conservation		Yes	Biodiversity health and diversity
 Conducting periodic 			indices. List of available flora
biodiversity surveys to assess			and fauna at a definite
species health and diversity			location in each year.
Identification and monitoring			
of endangered or keystone			Plant and animal species that are
species for protection			protected of endangered found
Assessment of genetic			
diversity in the farm's			(183/100)
robust populations			If found record of measures that are
 Exploring and conserving 			taken to protect them.
microhial diversity for			
ecosystem health			
 Monitoring indicator species 			
for early warnings of			
ecological stress			
 Tracking phenology of key 			
species to understand			
environmental changes			

Criteria	Immediate	Long term	Key indicator
	Effectiveness	ness	
Implementation of invasive		11000	
species management to			
protect native biodiversity			
 Certation of habitat maps to 			
guide and monitor			
conservation efforts			
 Implementation of habitat 			
restoration and			
reintroduction for at-risk			
species			
Development of climate			
resilience plans to adapt to			
changing environmental			
conditions			
• Collection of baseline data			
comparison			
Protected zones		Yes	Establishment and compliance with
 Designation and 			restricted zones
enforcement of no-fishing or			
restricted access zones to			
safeguard sensitive areas			
 Creation of wildlife corridors 			
and buffer zones to facilitate			
habitat connectivity			
Regularly monitoring and			
managing the health and			
changes in protected zones			
Application of adaptive management prostings			
management practices			
conservation			
Implementation of visitor			
education to raise awareness			
and promote conservation			
efforts			
 Maintaining and managing 			
zone connectivity to facilitate			
wildlife movement			
 Preservation of buffer zone 			
vegetation to support wildlife			
and ecosystem functions			
Use of non-intrusive barriers			
in buffer zones to control			
access without harming			
wildlife			

Criteria	Immediate Effectiveness	Long term Effective- ness	Key indicator
 Enhancing habitats within buffer zones to attract and support local wildlife Regularly maintaining wildlife corridors to ensure consistent connectivity 			

5.2 DETERMINATION OF BASELINE OPERATION AND WHEN RELEVANT, SET THE BASELINE CRITERIA AND EMPLOY THE BIODIVERSITY PERFORMANCE TOOL (BPT)

The current status of shrimp farming in the Sundarbans region of Bangladesh, reflects a significant industry that has expanded over the years to meet global demand for shrimp products. While providing economic benefits, this growth has raised several environmental concerns. Shrimp farming has been associated with adverse impacts on the fragile ecosystem of the Sundarbans, such as water pollution, habitat degradation, and loss of biodiversity. The release of effluents containing chemicals, antibiotics, and excess nutrients into local water bodies threatens water quality and the health of aquatic organisms. Furthermore, the conversion of pristine mangrove areas into shrimp farms disrupts crucial ecological functions and exacerbates issues like soil erosion and loss of critical habitat for various species.

The importance of a "baseline operation" in the context of Sustainable Aquaculture in Mangrove Ecosystem (SAIME) cannot be overstated. Establishing a baseline operation involves assessing and documenting the existing state of shrimp farming in the Sundarbans, from farm practices to their environmental impacts. It provides a crucial benchmark for evaluating changes in environmental conditions, species diversity, and ecosystem health over time. These baseline data and criteria help in defining what needs to be conserved or improved to ensure the sustainability of shrimp aquaculture in the region. The Biodiversity Action Plan (BAP) can significantly benefit from this baseline operation. By having a clear understanding of the initial environmental status, the BAP can develop specific criteria and sustainability goals tailored to the unique challenges of the Sundarbans. This enables the BAP to focus on areas that require immediate attention and prioritize actions to mitigate environmental harm while promoting biodiversity conservation. The baseline operation data and criteria can serve as a reference point to assess the effectiveness of the BAP in the long term, helping to track progress and ensure that the aquaculture industry aligns with responsible environmental practices in the Sundarbans. The following indicators need to be considered during initial screening:

Landscape	Indicator	Comprehensive clarification
Mangrove	Success of mangrove	How do shrimp farming practices align with or support
propagation areas	replanting initiatives	mangrove propagation efforts in the region?
Water bodies and	Water quality	What are the impacts of shrimp farming on water
aquatic ecosystems	parameters (salinity, pH,	quality and aquatic ecosystems, and how are these
	dissolved oxygen)	impacts managed or mitigated?
Coastal areas	Erosion rates and	How does shrimp farming influence coastal erosion and
	sediment deposition.	sediment deposition, and what strategies are employed
		to mitigate these effects?
Biodiversity and	Species diversity and	What is the impact of shrimp farming on local
wildlife habitats	population abundance	biodiversity and wildlife habitats, and how are these
		impacts addressed?
Farmlands and	Soil quality and land use	How does shrimp farming influence soil quality and
agricultural areas	patterns	land use in adjacent agricultural areas, and what
		practices maintain soil health?
Waterways and	Water flow and	How are waterways and canals affected by shrimp
canals	connectivity.	farming, and what measures ensure their continued
		functionality?
Community	Socioeconomic benefits	What economic and social advantages does shrimp
livelihoods	for local communities	farming bring to local communities, and how are these
		benefits balanced with environmental concerns?
Fishing grounds	Catching fish and harvest	How does shrimp farming impact fishing grounds and
		the livelihoods of local fishermen, and what strategies
		support sustainable coexistence?
Protected areas	Presence and health of	How does shrimp farming interact with nearby
and reserves	protected areas	protected areas and reserves, and what measures are
		in place to preserve their ecological integrity?
Ecosystem habitat	Changes in the health	To what extent does shrimp farming disturb natural
disturbance	and biodiversity of local	ecosystems, and what mitigation measures are adopted
	ecosystems.	to minimize the disturbance?
Tidal flats and	Changes in tidal flat and	What impact does shrimp farming have on tidal flats
marshlands	marshland ecosystems	and marshlands, and how is their ecological value
		preserved?

Landscape	Indicator	Comprehensive clarification				
Aquaculture Farms						
Site selection	Site selection criteria	Careful site selection helps prevent environmental damage and optimizes aquaculture operations by considering factors like water quality, accessibility, and ecological sensitivity.				
Species selection	Species suitability and biodiversity conservation	Choosing appropriate species for aquaculture impacts productivity, resource use, and the ecological compatibility of the operation.				
Water quality	Dissolved oxygen (DO) levels (mg/L)	Maintaining optimal water quality ensures that fish have the oxygen they need for respiration, supporting overall aquatic health and productivity.				
Stock health	Disease incidence rate (%)	Monitoring disease incidence is vital to safeguarding the well-being of aquaculture species, preventing outbreaks, and maintaining high production levels.				
Sediment quality	Sediment organic content (%)	Sediment quality affects the benthic environment, nutrient cycling, and the overall health of aquatic ecosystems, making it crucial for sustainability.				
Waste management	Effluent nutrient concentration (mg/L)	Effective waste management controls nutrient pollution, reducing the environmental impact of aquaculture operations.				
Compliance with regulations	Number of regulatory violations	Adherence to regulations guarantees sustainable and responsible aquaculture practices, preventing legal issues and promoting public trust.				
Monitoring and evaluation	Frequency of performance evaluations and identification of problems	Regular monitoring and evaluation provide insights for continuous improvement, ensuring the long-term sustainability and success of aquaculture farms.				
Mangrove Integration						
Mangrove health	Mangrove canopy cover (%)	Healthy mangroves provide essential ecosystem services, such as shoreline protection and habitat for marine life, helping mitigate erosion and sustaining biodiversity.				
Mangrove species selection	Diversity of mangrove species	Selecting diverse mangrove species enhances resilience and ecosystem functions, contributing to the overall health of the integrated system.				
Mangrove management	Mangrove restoration success rate	Effective mangrove management, including restoration efforts, ensures the long-term viability of these vital coastal ecosystems.				
Ecosystem services	Nutrient retention efficiency (%)	Ecosystem services, like nutrient cycling, maintain water quality and support the long-term productivity of integrated mangrove aquaculture systems				

Biodiversity conservation	Presence of endangered	Protecting endangered species within these environments helps conserve unique wildlife and
	species	ensures the integrity of local ecosystems.
Adaptive management	Number of adaptive management actions taken	Adaptive management allows for timely responses to changing conditions, ensuring the continued success and resilience of the integrated system in a dynamic environment.
Economic viability	Net profit margin (%)	Ensuring economic viability sustains livelihoods and supports economic well-being, ultimately benefiting the local economy.

5.3 ESTABLISHING THE STARTING POINT (BASELINE SCENARIO)

Mapping the farm's baseline for effective biodiversity action planning in aquaculture and customizing BAP to farm specific needs is a crucial aspect of responsible aquaculture management. The initial step of mapping the farm's baseline provides a comprehensive understanding of the existing ecosystem, allowing aquaculture practitioners to identify ecological hotspots and potential zones for Sustainable Aquaculture in Mangrove Ecosystem (SAIME). This mapping process, whether accomplished through Geographic Information System (GIS) technology or hand-drawn methods, serves not only as a tool for informative visualization but also as a catalyst for raising awareness and motivation among stakeholders. Additionally, customizing the BAP to meet the specific needs of individual aquaculture farms is essential. It ensures that the proposed conservation measures and strategies align with the farm's unique circumstances, ultimately enhancing the sustainability of aquaculture operations. By exploring these vital components, we can harness the power of tailored BAPs to promote the coexistence of aquaculture and biodiversity conservation while maintaining economic viability. The criteria for monitoring in the starting point are listed below:

Table-4: Criteria for biodiversity documentation in current practices

Criteria	Immediate Effectiveness	Long term Effectiveness	Key indicator
Farm information documentation Gathering information pertaining to the farm's natural and ecological landscape, including the surrounding areas, to facilitate the identification of potential water bodies suitable for Sustainable Aquaculture in Mangrove Ecosystem (SAIME) practice The parameters should include the following: • Farm layout and boundaries • Ownership and legal	Yes		Accurate farm map and boundary demarcation for mangrove restoration and integration

Criteria	Immediate Effectiveness	Long term Effectiveness	Key indicator
 Farm size and configuration Mangrove ecosystem Water source and management Infrastructure and equipment Water quality monitoring Community engagement 			
Biodiversity conservation measures and compliance with regulations		Yes	Documentation of conservation efforts. Marking potential brackish water resources in the map including water quality parameters and areas of the farm. Assessment of the suitability of the habitat for mangrove restoration

5.4 ESTABLISHMENT OF BIODIVERSITY ACTION PLAN (BAP)

The Biodiversity Action Plan (BAP) in Sundarbans, Bangladesh, encompasses several vital objectives and main targets. Its core objectives revolve around the preservation and restoration of the fragile mangrove ecosystems in the Sundarbans region, which are essential for biodiversity. The plan aims to enhance and safeguard the biodiversity of the area, with a particular focus on protecting the habitats of endangered species. Another key objective is to promote sustainable and responsible aquaculture practices along the coastal region, recognizing the importance of balancing economic activities with environmental conservation.

Biodiversity conservation, the BAP seeks to improve the livelihoods and well-being of local communities who depend on the Sundarbans ecosystem. This involves promoting community engagement and providing alternative livelihood options to reduce pressure on the environment. Furthermore, the plan addresses the pressing issue of climate change, aiming to develop strategies for resilience and adaptation to mitigate the impacts of climate change on the Sundarbans environment. By focusing on these objectives and targets, the Biodiversity Action Plan endeavors to ensure the long-term health and sustainability of the Sundarbans, its unique biodiversity, and the communities that call it home.

Table -5: Key criteria for effective biodiversity action planning

Criteria	Immediate Effectiveness	Long term Effectiveness	Key indicator
 Farm area management Establish and maintain accurate farm maps and boundary 	Yes		The precision and up-to-date status of farm maps and boundary demarcation are
demarcations. In cases where			crucial indicators for effective farm area management.

Criteria	Immediate Effectiveness	Long term Effectiveness	Key indicator
 mapping is time-consuming, such as when land ownership lacks clear regulation, a basic representation of the structures and areas suffices. Regularly update proof of legal ownership and permits for the farm area. Continuously monitor the total farm area, shape, and layout for any alterations. Implement documentation of mangrove species present and their health status. Maintain records on the source of water for aquaculture and its management practices. Create and update an inventory of infrastructure and equipment in use on the farm. Maintain comprehensive records of water quality parameters over time. Document evidence of community interactions and partnerships related to the farm area. Keep records of any changes in land use or expansions in the farm area. Continuously update and maintain data on any land or soil improvements. Monitor and record the impact of farm operations on local biodiversity. Document any restoration or conservation efforts within the farm area 		Voc	
 Engage local communities, government agencies, NGOs, and experts for collaboration. Document meeting minutes, participant lists, agreements, 		res	cooperation of stakeholders in meetings and collaborative activities.

Criteria	Immediate	Long term	Key indicator
and correspondence with	Effectiveness	Effectiveness	
and correspondence with			
Stakenoiders.			
Ensure transparent and productive stokeholder			
involvement			
	N		Completion and company of
Baseline assessment	Yes		Completion and accuracy of
Conduct a comprehensive			baseline assessment reports,
baseline assessment of			including notspot maps,
blodiversity.			species data, and identified
Document biodiversity			threats.
assessment reports, hotspot			
maps, species data, and threat			
reports.			
Gain a clear understanding of			
the ecosystem's current state.			
Resource allocation		Yes	Effective allocation of financial
Allocate financial and human			and human resources, as
resources effectively.			reflected in budget accuracy
 Document budgets, resource 			and resource utilization
allocation decisions, and			
personnel involved.			
 Ensure transparent and 			
accountable resource			
management			
Community inclusivity		Yes	Degree of community
 Involve local communities in 			involvement, documented in
decision-making processes.			meeting records, agreements,
 Document community meeting 			and feedback.
details, agreements, and			
feedback.			
 Foster community engagement 			
and cooperation.			
Monitoring framework		Yes	The functionality and
 Establish a robust monitoring 			efficiency of the monitoring
system.			system, as evidenced by
 Document monitoring plans, 			monitoring plans and data
reports, and biodiversity data.			quality.
 Assess the impact of 			
conservation measures and			
track progress.			
Capacity building		Yes	Participation and progress in
 Enhance the skills and 			training activities, improving
knowledge of stakeholders			stakeholders' knowledge and
through training.			skills.
• Document training schedules,			
attendance, and training			
materials.			

Criteria	Immediate Effectiveness	Long term Effectiveness	Key indicator
 Ensure individuals and organizations can execute the plan effectively. 			
 Adaptability Be ready to adapt the BAP to changing circumstances. Document BAP revisions, reasons for changes, and outcomes of adaptive management. Ensure the plan remains relevant and effective over time. 		Yes	The number of BAP revisions and the effectiveness of adaptive management.

5.5 PROMOTION OF NATIVE SPECIES PRESERVATION AND MITIGATING INVASIVE ALIEN SPECIES (IAS) IN SUSTAINABLE AQUACULTURE IN MANGROVE ECOSYSTEM (SAIME)

The preservation of native species encompasses the protection and restoration of critical habitats, particularly mangrove ecosystems, which act as nurseries for indigenous aquatic life. This strategy also includes selective breeding programs to maintain genetic diversity within these populations. Simultaneously, SAIME farms employ vigilant monitoring and control measures to detect and combat IAS. The early detection of invasive species enables swift containment efforts, including their physical removal and the introduction of natural predators. SAIME farms also adhere to government regulations and international conventions to prevent the introduction of IAS. These combined efforts work cohesively to safeguard the Sundarbans' unique biodiversity, support local communities, and ensure the long-term sustainability of SAIME practices.

Table-6: Key criteria for fostering indigenous species and safeguarding against invasives

Criteria	Immediate	Long term	Key indicator
	Effectiveness	Effectiveness	
Community Awareness:		Yes	Percentage of community members
Inform fishers and			informed about indigenous species decline
community members			and IAS impact.
about the decline of			
indigenous species			
population and the impact			
of Invasive Alien Species			
(IAS).			
Socio-economic Support:	Yes		Farm registration under appropriate
Support the socio-			authority.
economic structure of			• Knowledge of farm managers on the
SAIME farms through			importance of biodiversity.
capacity building, training,			 Training on biodiversity
and expert advice.			management.
			 Aquaculture species harvested by
			farmers.

IAS Identification and Reporting: Identify IAS on farmland and report occurrences to the competent nature conservation authority.		Yes	 Presence of IAS on the farmland. Reporting to the authority about IAS occurrences. Inclusion of IAS control measures in the Biodiversity Action Plan (BAP).
Protection of Threatened Species: Explicitly point out that threatened, declining, and protected animal and plant species must not be collected, and protected areas must not be affected	Yes		Documentation of compliance with government regulations regarding protected species and areas.

5.6 MEASURES TO MINIMIZE NEGATIVE IMPACTS ON ENVIRONMENT AND SUSTAINABLE SHRIMP FARMING PRACTICES

5.6.1 Site selection

1. Avoid converting pristine mangrove areas into shrimp farms:

It is crucial to resist the temptation to establish shrimp farms in untouched, pristine mangrove areas. These untouched mangroves are essential for biodiversity, serving as nurseries for various species and acting as natural barriers against coastal erosion and storm damage. By avoiding their conversion, we protect these invaluable ecosystems.

2. Select previously disturbed or degraded areas for farm establishment:

Opting for locations that have already been subjected to human activity, such as deforestation or agricultural use, helps minimize the environmental impact. Choosing these areas for shrimp farming allows for their ecological recovery, aiding in the rehabilitation of degraded lands.

5.6.2 Mangrove rehabilitation

1. Implement mangrove restoration efforts within and around the farm:

The deliberate restoration and maintenance of mangrove habitats is essential for maintaining biodiversity. By actively replanting mangrove trees within the farm and its immediate locality, not only safeguard these critical ecosystems but also enhance water quality, provide habitat for numerous species, and contribute to the stability of coastlines.

2. Monitor and maintain mangrove health through regular tree planting and protection:

To ensure the continued vitality of mangroves, it is essential to engage in ongoing care. Regular tree planting and protective measures, such as guarding against illegal logging or land conversion, are necessary to guarantee that these ecosystems remain robust and continue to fulfill their ecological roles. Logging or land conversion, are necessary to guarantee that these ecosystems remain these ecosystems remain robust and continue to fulfill their ecological roles.

3. Engage the local community in mangrove restoration:

Collaborate with the local community and provide opportunities for them to actively participate in mangrove restoration efforts. Involving the community not only promotes a sense of ownership but also strengthens the commitment to conserving these ecosystems.

4. Establish mangrove nursery facilities:

Set up mangrove nursery facilities where seedlings can be cultivated and nurtured before being transplanted into the farm and surrounding areas. This ensures a reliable source of healthy mangrove trees for restoration efforts.

5.6.3 Water quality management

1. Establish efficient water treatment systems to reduce pollution:

Implementing advanced water treatment systems within the shrimp farm is critical. These systems remove harmful substances, ensuring that discharged water is of higher quality and thus significantly reduces the negative impact on local aquatic life.

2. Monitor and maintain proper water quality levels, including salinity and dissolved oxygen:

Consistent monitoring of water quality parameters, such as salinity and dissolved oxygen, is essential to maintain a healthy aquatic environment. Proper maintenance of these levels supports the well-being of both farmed shrimp and nearby ecosystems.

3. Evaluate the use of eco-friendly feed:

Explore the use of eco-friendly shrimp feed that produces lower waste and fewer pollutants when consumed by the shrimp. These feeds can lead to improved water quality by reducing nutrient excess.

4. Optimize feeding practices:

Develop and implement feeding schedules and practices that minimize overfeeding, which can lead to waste and water quality issues. Careful management of feeding quantities contributes to a healthier aquatic environment.

5. Implement educational programs for farm workers:

Educate farm workers about the importance of water quality management and how their daily activities can impact it. Training and awareness programs empower employees to actively contribute to maintaining water quality.

6. Establish emergency response protocols:

Develop and maintain emergency response protocols for potential incidents that could affect water quality, such as disease outbreaks or extreme weather events. Having well-defined plans in place can help mitigate damage and protect the environment.

5.6.4 Sustainable farming practices

1. Implement best aquaculture practices, minimizing the use of antibiotics and chemicals:

Responsible aquaculture practices minimize the reliance on antibiotics and chemicals, reducing the risk of environmental contamination and harm to non-target species.

2. Employ responsible feed management strategies to reduce waste and nutrient pollution:

Managing shrimp feed efficiently reduces waste and nutrient pollution. This practice minimizes the release of excess nutrients into the water, which can otherwise lead to ecological imbalances.

3. Regularly monitor and manage farm stocking densities:

Monitoring and managing stocking densities helps prevent overloading the farm environment, maintaining a healthier balance between farmed shrimp and local ecosystems.

4. Adopt energy-efficient farming techniques:

Incorporate energy-efficient technologies and practices into farm operations, such as the use of solar power, efficient aeration systems, and reduced reliance on fossil fuels. This minimizes the carbon footprint of shrimp farming.

5. Manage farm effluents responsibly:

Implement strategies to manage and treat farm effluents effectively before discharge. These measures can include constructed wetlands, sedimentation ponds, and biological filters to reduce the environmental impact.

5.6.5 Waste management

1. Develop efficient waste management systems, including sedimentation ponds and waste processing:

The establishment of waste management systems, such as sedimentation ponds and waste processing facilities, ensures that waste products from shrimp farming are efficiently handled, preventing their release into the environment.

2. Recycle organic waste as feed or fertilizer:

Recycling organic waste as feed or fertilizer reduces waste accumulation and maximizes its utility within the farming system, reducing the environmental impact.

3. Implement regular waste audits:

Conduct regular waste audits to assess the composition and volume of waste generated by the shrimp farm. These audits help identify areas for waste reduction and improvement in waste handling practices.

4. Explore the potential for value-added products:

Investigate opportunities to create value-added products from waste materials, such as shrimp shellbased chitin or chitosan products. These can generate additional income and reduce waste.

5.7 IMPLEMENTATION AND MONITORING OF THE BIODIVERSITY ACTION PLAN (BAP)

The practice of integrated mangrove aquaculture, the successful execution and oversight of Biodiversity Action Plan (BAP) in farms necessitate the establishment of a robust Monitoring & Evaluation (M&E) system. This system hinges on identifying two distinct sets of indicators: Performance Monitoring Indicators and Impact Indicators.

✓ Performance monitoring indicators:

Definition: These indicators critically evaluate the performance and execution of the strategies detailed in the BAP.

Elaboration: Performance indicators play a pivotal role in assessing the effectiveness of the steps taken to implement the BAP. They offer real-time insights into the progress of each measure, facilitating adaptive management.

✓ Impact indicators:

Definition: Impact indicators are strategically crafted to assess the broader consequences of the implemented measures on biodiversity.

Elaboration: These indicators primarily concentrate on the overall impact of the BAP on biodiversity within farms in the Sundarbans. They measure shifts in ecological well-being, alterations in species diversity, and the progress of habitat restoration efforts, offering valuable insights into the long-term achievements of the BAP.

✓ Data collection methods:

Identification: Following the determination of indicators, suitable methods for data collection will be identified.

Elaboration: The selection of effective data collection methods is of utmost importance for accurate monitoring. This may encompass on-site observations, interviews, surveys, and the utilization of technology to gather both quantitative and qualitative data.

✓ Implementation and monitoring table:

Definition: This table constitutes a comprehensive blueprint for executing and monitoring the BAP in farms. It delineates specific actions, assigns responsibility, sets timelines, and outlines expected outcomes.

Elaboration: Serving as an exhaustive guide, the table provides detailed information for every action item, specifying who is accountable for its implementation, the schedule for its completion, and the anticipated results.

5.8 RESPONSIBILITY OF ON-SITE AGENT

To ensure the effective execution of the BAP, our on-site agents will work in close cooperation with farmers, assuming designated roles and responsibilities as detailed in the table provided below:

таыс 7. Кезроны	able- 7. Responsibility of on-site agent							
Goal	Timeline	Measure	Indicator	Type of indicator	Data collection methods	Responsibilities		
Implementation of Integrated Mangrove Aquaculture to mitigate adverse effects on biodiversity within the farms.	Long term	Water exchange at the farms occurs every 15 days, coinciding with the full moon and new moon phases, while ensuring a minimum water depth of 3-4 ft is maintained	Number of farms maintaining water depth	Performance Monitoring	Collection of data by agents from the farmers	Agent and farmers		
		Reducing stocking density at the farms and introducing hatchery-bred shrimp seeds is undertaken to	Disease outbreak in shrimp andfish		Collection of data by agents from the farmers	Agent and farmers		

Table- 7: Responsibility of on-site agent

		minimize the				
		risk of disease				
		outbreaks				
		Exclusively	Exogenous feeds are		Collection of	Agent and
		relying on	not used inhectares		data by agents	farmers
		natural food	offarm area		from the	
		sources at the			farmers	
		farms, utilizing				
		Mustard Oil				
		Cake (MOC) to				
		promote				
		plankton				
		growth				
		Completely	Chemicals are not		Collection of	Agent and
		avoiding the	usedin hectares of		data by agents	farmers
		use of	farm area		from the	
		chemicals			farmers	
		within the				
		farms and				
		utilizing lime to				
		uphold water				
		quality				
		Regularly	Number offarmers		Collection of	Agent and
		assessing water	aremeasuring the		data by agents	farmers
		quality	pH and salinity of		from the	
		parameters at	their farms		farmers	
		specific				
		intervals to				
		ensure the				
		ponds water				
		quality is well-				
		Canducting a	Number of former		Callestian	Acoutoud
		conducting a	Number of farms	ent	conection	Agent and
		investigate how	impact of	sm	by agont	analyst
		loof littor	Inpact of	ses	by agent	
		affocts putriont		t as	anu	
		dynamics		act	agencies	
		within the		gm		
		farms and		_		
		identify				
		plankton				
		species that				
		benefit the				
		growth of				
		shrimp and fish				
Implementing	Long	Land	Land shaping done		Maintenance	Agent and
integrated	term	modification	in hectares offarm		of record by	farmer
mangrove		initiatives to	area		the agent and	
aquaculture to		extend pond			the farm	

facilitate the	embankments				
restoration of	and establish				
the	islands within				
Sundarbans'	the farms,				
mangrove	designated for				
ecosystem	mangrove				
	plantation				
	Installation of	Fencing structure		Maintenance	Agent and
	fencing around	created in hectares		of record by	farmer
	the farms to	offarm area		the agent and	
	safeguard			the farm	
	saplings from				
	grazing		-		
	Plantation of	Mangrove structure		Collection of	Agent and
	mangrove trees	created in hectares		data by agent	farmer
	to restore the	offarm area		and	
	mangroves			implemented	
	A	Destausticus		by tarmer	Agont
	Assessment of	Restoration of	ing	kecora keeping	Agent
	the survival and	mangroves in	tor	by agent	
	growthol	mectares of	oni		
	planted	mangrove area	Ē		
	farms and		nce		
	ovaluating the		ma		
			for		
	potentiario		Jer.		
	mangrove		-		
	regeneration				
	Reduce the	Number of hatchery-	-	Collection of	Agent and
	introduction of	hred seeds stocked		data by agent	farmer
	wild-caught	in the farms		and	lanner
	shrimp seeds to			implemented	
	safeguard			by farmer	
	ecosystem				
	diversity and				
	instead utilize				
	hatchery-bred				
	SPF organic				
	black tiger				
	shrimp seeds				
	on the farms				
	Assess the	Abundanceof algal		Collection of	Agent and
	diversity of	diversity inthe farms		reports by	analyst
	beneficial algae			agents and	
	in the farms for			agencies	
	aquaculture				
	Evaluate the	Number of microbes		Collection of	Agent and
	microbial	available inthe farms		reports by	analyst
	diversity within				

the farms that contribute to aquaculture benefits			agents and agencies	
Assessing shifts in floral diversity following the BAP implementation	Number of flora increased/decreased after implementation of in the farms		Record keeping by agent	Agent
Investigation of the increase in faunal diversity post-BAP implementation	Number of fauna increased/decreased after implementation of in the farms		Record keeping by agent	Agent
Prevent the introduction of invasive alien fish/shrimp species into the farms	Number of invasive/alien species available in the farms	ipact assessment	Maintenance ofrecord by organizations	Corres- pondent
Guard against the introduction of invasive alien fish/shrimp species into the farms	Number of species restored in and near the farms	ш	Maintenance of record by organizations	Corres- pondent

5.9 STAKEHOLDER ENGAGEMENT

Collaborate with local communities, NGOs, and government agencies to ensure compliance and support for biodiversity conservation efforts:

Building a strong relationship with local communities involves not only sharing the farm's goals and addressing concerns but also offering opportunities for local employment and educational programs. Additionally, partnerships with environmental NGOs bring specialized expertise in biodiversity conservation and access to valuable resources. Engaging with government agencies through transparent communication and regulatory compliance demonstrates the farm's commitment to operating within environmental laws.

Seek third-party certifications, to validate responsible farming practices:

Certification, for instance, involves a thorough assessment of the farm's practices against sustainability standards, demonstrating dedication to environmental protection and ethical standards. Similarly, BAP certification evaluates environmental and social responsibility, assuring consumers and stakeholders of responsible farming practices. These certifications enhance the farm's reputation and marketability, providing independent verification of its commitment to high industry standards.

Research collaboration:

Collaborate with academic institutions and researchers to conduct studies that assess the environmental impact and effectiveness of conservation efforts. Sharing findings can contribute to broader knowledge and inform best practices.

Community feedback mechanisms:

Establish mechanisms for ongoing feedback from local communities and stakeholders. Regularly seek input and address concerns to maintain a positive relationship and demonstrate responsiveness to their needs.

6. Summary

The Biodiversity Action Plan (BAP aims to harmonize shrimp farming with mangrove conservation and enhance biodiversity, addressing the environmental challenges associated with shrimp farming expansion through Sustainable Aquaculture in Mangrove Ecosystem (SAIME) project in this unique and biodiverse area. The BAP incorporates strategies and measures such as site assessment, responsible farming practices, mangrove conservation, monitoring, stakeholder engagement, regulatory compliance, and educational outreach to protect and enhance biodiversity within SAIME. Customized BAPs for individual aquaculture farms tailor conservation measures to specific farm needs, promoting sustainability and coexistence between aquaculture and biodiversity, while addressing climate adaptation and community empowerment. This plan strives to ensure the long-term health of the biodiversity, ecosystem, and local communities while balancing economic activities with environmental conservation.

7. References

- 6. Ahammad, R., Hossain, M. K., & Husnain, P. (2014). Governance of forest conservation and co-benefits for Bangladesh under changing climate. J. For. Res. 25(1), 29–36.
- Ahmed, M. U., Alam, M. I., Debnath, S., Debrot, A. O., Rahman, M. M., Ahsan, M. N., & Verdegem, M. C. J. (2023). The impact of mangroves in small-holder shrimp ponds in south-west Bangladesh on productivity and economic and environmental resilience. Aquaculture, 571, 739464.

- 8. Bosma, R. H., Debrot, A. O., Rejeki, S., Tonneijck, F., Yuniati, A. W., & Sihombing, W. (2020). Associated Mangrove Aquaculture Ponds: Building with Nature to Restore Eroding Tropical Muddy Coasts. Ecoshape Technical Report, Dordrecht, The Netherlands.
- 9. Bosma, R. H., Nguyen, H. T., Siahainenia, A. J., Tran, H. T. P., & Tran, H. N. (2016). Shrimp-based livelihoods in mangrove silvo-aquaculture farming systems. Rev. Aquac. 8, 43–60.
- Debrot, A. O., Veldhuizen, A., van den Burg, S. W. K., Klapwijk, C. J., Islam, M. N., Alam, M. I., Ahsan, M. N., Ahmed, M. U., Hasan, S. R., Fadilah, R., Noor, Y. R., Pribadi, R., Rejeki, S., Damastuti, E., Koopmanschap, E., Reinhard, S., van Scheltinga, C. T., Verburg, C., & Poleman, M. (2020). Non-timber Forest product livelihood-focused intervention in support of mangrove restoration: a call to action. Forest 11(11), 1224.
- 11. FAO. (2020). The state of world fisheries and aquaculture 2020. In: Sustainability in Action. Fisheries and Aquaculture Technical Paper (Rome).
- 12. FRSS. (2021). Yearbook of Fisheries Statistics of Bangladesh 2020-2021. Department of Fisheries, Ministry of Fisheries and Livestock, Government of the People's Republic of Bangladesh.
- 13. Iqbal, M. H. (2020). Valuing ecosystem services of Sundarbans Mangrove forest: Approach of choice experiment. Global Ecology and Conservation, 24, 1-10.
- Khan, M. F. A., Rahman, M. S., & Giessen, L. (2020). Mangrove forest policy and management: prevailing policy issues, actors' public claims and informal interests in the Sundarbans of Bangladesh. Ocean Coast. Manag. 186, 105090.
- 15. Mahmood, H., Ahmed, M., Islam, T., Uddin, M. Z., Ahmed, Z. U., & Saha, C. (2021). Paradigm shift in the management of the Sundarbans mangrove forest of Bangladesh: issues and challenges. Trees Forests People, 5(100094).
- Naylor, R. L., Hardy, R. W., Buschmann, A. H., Bush, S. R., Cao, L., Klinger, D. H., Little, D. C., Lubchenco, J., Shumway, S. E., & Troell, M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591, 551–563.
- 17. Rahman, M. M., & Begum, S. (2011). Land cover change analysis around the Sundarbans mangrove forest of Bangladesh using remote sensing and GIS application. Journal of Science Foundation, 9(1&2), 95e107.
- 18. World Bank. (2018). Why Is Bangladesh Vulnerable to Disasters? Bangladesh Disaster Risk and Climate Resilience Program.

Project Partner:

supported by:

Mercedes-Benz

IMPRINT

Publisher: Global Nature Fund (GNF); Authors: XXX; Editorial Office: Ralph Dejas (GNF), Images: Ralph Dejas (GNF) Dejas (GNF) As of December 2023

